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Abstract 

We suggest how to redefine the multicointegration model of Granger and Lee (1990) in terms of an 1(2) system and 
subsequently propose a one-step procedure for estimation and inference which will have favourable statistical properties 
compared to the two-step procedure suggested by Granger and Lee. With respect to the single equation residual based 
cointegration procedure for I(2) systems we tabulate new critical values that are necessary to accommodate the presence of 
deterministic components. © 1997 Elsevier Science S.A. 
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1. Introduct ion  

It is widely recognized that many economic time series are non-stationary and contain stochastic 
trends such that the notion of cointegration provides the natural starting point for the analysis of  such 
series, see Engle and Granger (1987). Most non-stationary time-series appear to be integrated of  order 
one, I(1), that is, they only need to be differenced once in order to become stationary. However, 
recent research has shown that some economic variables (e.g. nominal variables like money,  prices, 
wages, and some stock variables) may be better characterized as 1(2) series, and various methods for 
analyzing systems containing 1(2) variables have been developed, see e.g. Haldrup (1994), Johansen 
(1995), Kitamura (1995), Paruolo (1996), and Stock and Watson (1993). 

A particular special case where the analysis of 1(2) variables becomes relevant follows from the 
work by Granger and Lee (1989, 1990). They consider the case with two I(1) time series X, and Y, 
which cointegrate such that the linear-combination Z, = Y, - fiX, is stationary I(0). By definition the 

t cumulated error series S, = ~j= ~ Zj is I(1) and hence it can happen that S t cointegrates with X, and/or  
Y,, such that, say, I, = Y,-~/S,  is I(0). This implies that essentially there are two levels of 
cointegration between just two I(1) time series. Granger and Lee denote this sort of  cointegration 
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'multicointegration', and they demonstrate how such a phenomenon may arise in e.g. a standard cost 
minimizing framework. The particular economic example they give (and analyze empirically) is the 
case where I1, and X, are production and sales, respectively, such that for /3 = 1, Z, is inventory 
investment whereby S, becomes the level of inventories. Another example is provided by Lee (1992) 
where Y, is new housing units started, X, is new housing units completed, Z, is uncompleted starts, and 
hence S, is housing units under construction. 

Multicointegration is an important property of the data that needs to be considered empirically. As 
emphasized by Lee (1992) and Engsted and Johansen (1997) multicointegration will invalidate usual 
procedures for estimation and testing in cointegrated systems, since the standard error correction 
model will be misspecified in this case. Naturally this will also have serious consequences for instance 
in forecasting and hypothesis testing. 

1(2) cointegration is relevant for the analysis of multicointegrated time series since implicitly it 
involves the cumulation of I( 1 ) variables which by definition are 1(2). However, the statistical analysis 
proposed by Granger and Lee for multicointegrated series does not involve variables which are 
explicitly modelled as being 1(2). In fact, they only consider the case where the cointegrating vector at 
the first level is known in advance, i.e. where/3 = 1, and, hence, does not need to be estimated. This 
implies that the statistical analysis only consists of investigating whether the directly observable I(1) 
variables X t, Y, and S, are cointegrated. In some cases, however, /3 is not known beforehand and 
hence must be estimated. Standard consumption theory, for example, implies that consumption and 
income cointegrate such that savings are stationary. By cumulating savings we obtain wealth which 
according to the life-cycle hypothesis should cointegrate with consumption. Hence, there is 
multicointegration between consumption and income. However, in empirical work one often faces the 
problem of how to measure durable goods and the associated service flows. Campbell (1987) suggests 
to let the share of nondurable and service consumption to total consumption be determined as an 
unknown parameter which can be estimated in a cointegrating regression for income and nondurables 
and services consumption. Hence, if I1, denotes income and X, nondurables consumption, the 
parameter/3 in the first level of cointegration is unknown and must be estimated. 

For this more general case where/3 is not known a priori, Granger and Lee propose the following 
two-step procedure. First, a super-consistent estimate of /3  is obtained in a regression containing Y, 
and X t. The residuals from this regression, Z,, then provide the estimated Z,-series. In the second step 
the cumulated sum of 2], is generated and thus giving the S, series, which subsequently is regressed 
onto X, and/or Y,, resulting in a super-consistent estimate of 3', provided there is multicointegration. 

In the present note we show that there are a number of important statistical problems associated 
with the two-step procedure suggested by Granger and Lee for the case where/3 has to be estimated, 
and we propose an alternative one-step procedure with favourable statistical properties. The procedure 
that we propose simultaneously tests both levels of cointegration by exploiting the fact that 
multicointegration implies 1(2) cointegration in a particular way. The 1(2) cointegration analysis of 
Johansen (1995) may be adopted in this case by considering amongst the model variables the 
cumulated series, Y~=, Xj and E~= 1 Yj. Alternatively the single equation analysis for 1(2) systems 
suggested by Haldrup (1994) may be used. In contrast to the two-step procedure proposed by Granger 
and Lee, the distributions concerning tests for multicointegration in a one-step procedure will be 
well-known. Furthermore, provided there is multicointegration, the cointegration parameter at the first 
level will be estimated at the super-super-consistent rate, Op(T2), in the single-step procedure. 

Another purpose of this note is to extend existing tables with critical values for the ADF 
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cointegration test to allow for a trend polynomial in cointegration regressions with both I(1) and 1(2) 
variables. In the present context such a polynomial will arise naturally because if the variables in 
levels have a non-zero mean or a linear trend (which is most often the case in practice), then, by 
cumulation, a linear - or even a quadratic - trend will be generated. 

2. Estimating and testing multieointegrated systems 

Before proceding it is worthwhile to give a formal definition of multicointegration which extends 
Granger and Lee (1990). To simplify the arguments we consider the case with a single cointegration 
vector at each level of cointegration. This will naturally be the case as in Granger and Lee (1989, 
1990) where there are only two variables in the system. It is our belief that this is the situation that 
will most likely occur in practice. However, it is possible, of course, to extend the definition further to 
the case with multiple multicointegration relations, see Engsted and Johansen (1997). 

Definition 1. Multieointegration. Assume  that Yt a n d  the vec tor  t ime series X t are co in tegrated  t ime 
series o f  order  CI(1,1) such that I1, - f iX, = Z t is s tat ionary.  X t is a s sumed  no t  to have  e lements  that  
cointegrate.  I f  the integral  I( 1 )-variable S t = A -  tZ, = E~= 1 Zj cointegrates  with X t (or al ternatively,  
Y~) such that  a parame te r  vector  Y exists whereby  S t - v X  t is also a s tat ionary relation, then Y, and  X t 
are said  to be mult icointegrated.  In this case the cointegrat ing relat ionship amongs t  the variables  can 

be wri t ten as 

S t - ~/X t = A - 1 y t  - 3 A - 1 X t  - ~l/Xt ~ [ ( 0 )  (1) 

t - 1  t 
where d - l Yt = ~j= 1 Yj and  A Xe = Y~j = 1 Xj are now  I(2) variables.  

Since multicointegration implies cointegration between the cumulated cointegration errors at one 
level of cointegration with the original variables, the implied consequences w.r.t, estimation and 
testing are non-trivial. On the face of it there are two procedures to test for multicointegration that 
seem possible: A two-step procedure and a one-step procedure. Both single equation and multivariate 
procedures may be considered but our main focus is here on standard single equation residual based 
procedures. 

2.1. A two step procedure  

The two step procedure which has been suggested by Granger and Lee (1990) is based on the idea 
that first cointegration between Y, and X, is tested using standard cointegration techniques. If the series 
are accepted to be cointegrated, i.e. such that 2 t = Y, - fiX, is stationary, the regression residuals from 

A-I~ ~t Zj. In the second step this variable is this first step are cumulated as the new variable - ~ ,=  j=l 
regressed on X t and possible deterministics, e.g. an intercept and a time trend, in order to take account 
of non zero means and drifts of the series. Subsequently the integration order of the regression 
residuals from this second step regression is tested using the standard procedure. If the errors are I(0) 
the series are multicointegrated. Although this procedure seems plausible in principle, it appears to be 
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less attractive in practice. It can be shown I that the limiting theory to test for multicointegration is 
complicated by the fact that the auxiliary regression is based on cumulated regression residuals from 
another regression. This means that by using regression residuals in the second step the S, variable is 
bounded by the fact that S t - -0  where T is the sample size. Standard methods to test for cointegration 
therefore become invalidated for this particular type of models, since the asymptotics will be 
expressed in terms of functionals of a Brownian bridge process rather than a Brownian motion process 
as is normally the case. Hence the size of standard residual based cointegration tests will be 
incorrect 2. Naturally the actual distributions and new critical values can be tabulated to account for the 
particular distributions. However, as we shall see in the sequel we opt for a one step procedure which 
may be preferred for several reasons. 

2.2. A one step procedure 

The basis for this procedure is to consider (1) as the benchmark for the joint estimation of the 
model parameters. Since the single series may potentially have a drift it is necessary to include 
deterministic components like a linear and a quadratic trend in the auxiliary integral regression 3. 
Hence the cointegration regression reads 

d-~Yt = a o + ct~t + 0~2 t2 + flA-1Xt + ")/X t + u t. (2) 

Alternatively, in place of the non-accumulated X t series, it is possible to use II, as a regressor. The 
idea is now to test whether the errors ut from the integral regression (2) follow an I(0) process (the 
case of multicointegration), an I(1 ) process (the case of first level cointegration but no multicointegra- 
tion) and finally the case of an 1(2) process where there is no cointegration amongst the variables. 

If the variables exhibit multicointegration such that u, is I(0) then it follows as a special case of 
naldrup (1994) (Theorem 1, p. 160) that the least squares estimators g/=Op(T -1) and [3=Op(T-2). 
Hence the cointegration parameters corresponding to the I(1) variables can be estimated super 
consistently whilst parameters associated with the generated 1(2) regressors can be estimated 
super-super consistently. The latter result is especially interesting since the rapid rate of convergence 
cannot be achieved by using a two stage non-integral regression procedure. 

A single equation residual based regression procedure for 1(2) cointegration can now be conducted 
along the lines suggested in Haldrup (1994). The procedure is a straightforward generalisation of the 
Engle-Granger procedure developed for I(1) variables. Hence least squares regression residuals a, are 
first constructed from the regression (2) (possibly without a quadratic trend included), and 
subsequently the integration order can be tested by an augmented Dickey-Fuller t-ratio test, i.e. the 
t-statistic of P0 from the regression 

P 

Aa, = p0t~,_, + ~ pfl~,_j + v,. (3) 
j = l  

~The technical details and a proof was included in an earlier version of this paper and can be obtained from the authors upon 
request. 
2Note that if the cointegration vector of the first step is given beforehand, no estimation is involved and the second stage of 
the procedure is perfectly valid. In many cases this is likely to be the case. Our critique only applies when the first step 
cointegration vector is unknown. 
3When a drift is absent in the series it suffices to include a time trend to account for the initial conditions. 
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T h e  d i s t r i bu t i on  o f  the  D i c k e y - F u l l e r  t - tes t  is d e r i v e d  and  r e p o r t e d  in H a l d r u p  (1994)  for  the  

s i tua t ion  w h e r e  at  l eas t  c o i n t e g r a t i o n  at the  first  l eve l  is found .  In o the r  words ,  it  is a s s u m e d  a pr ior i  

that  II, and  X, are  CI (1 ,1 ) ,  o r  a l t e rna t i ve ly ,  A-1y~ and  A - t X t  are CI(2 ,1 ) .  U n d e r  the  nul l  the re  is no 

fur ther  c o i n t e g r a t i o n  (i .e.  no  m u l t i c o i n t e g r a t i o n  in the  p r e se n t  set  up)  and  h e n c e  u, is I (1) .  The  

d i s t r i bu t ions  are  f o u n d  to d e p e n d  u p o n  bo th  the  n u m b e r  o f  I (1 )  r eg re s so r s  in the  m o d e l ,  m~, and  the 

n u m b e r  o f  1(2) r eg ressor s ,  m 2. The  cr i t ica l  va lues  for  this  case  are  r e p o r t e d  in the a b o v e  r e f e rence  for  

the  s i tua t ion  w h e r e  a cons t an t  is i n c l u d e d  in the  r eg res s ion .  In  T a b l e s  1 and  2 in the  p r e se n t  no te  the  

Table 1 
Linear trend case 

m~ T Probability of a smaller value 

m2=!  m2=2 

0.01 0.025 0.05 0.10 0.01 0.025 0.05 0.10 

25 -5.21 -4 .72  -4 .29  -3 .88  -5.81 -5 .25 -4 .83 -4.41 
50 -4 .66  -4 .33 -4.01 -3 .67  -5 .14  -4 .77  -4 .45 -4 .10  

100 -4 .55 -4 .18  -3 .90  -3 .59  -4 .93  -4 .56  -4.31 -3 .98  
250 -4.41 -4 .08  -3 .83 -3.51 -4.81 -4 .49  -4 .20  -3.91 
500 -4 .33 -4 .04  -3 .78  -3 .49  -4 .75  -4 .42  -4 .14  -3 .84  

25 -5 .60  -5 .10  -4.71 -4 .30  -6 .24  -5 .68  -5.21 -4 .80  
50 -5.11 -4 .70  -4 .42  -4 .08  -5 .62  -5 .22  -4 .89  -4.51 

100 -4 .85 -4 .54  -4 .26  -3 .94  -5 .23  -4 .90  -4 .62  -4 .29  
250 -4 .73 -4 .43  -4 .19  -3 .89  -5.11 -4 .77  -4 .50  -4 .20  
500 -4 .73 -4 .42  -4 .15 -3 .87  -5 .05  -4 .74  -4 .48  -4 .18  

25 -6 .09  -5 .57  -5 .14  -4 .69  -6 .70  -6 .17  -5 .70  -5 .22  
50 -5 .47 -5 .07  -4 .74  -4 .38  -5 .98  -5 .53 -5 .17  -4 .79  

100 -5.21 -4 .86  -4 .58  -4 .26  -5 .59  -5 .19  -4 .93  -4 .62  
250 -5 .07  -4 .79  -4.51 -4 .20  -5 .35  -5 .07  -4 .80  -4.51 
500 -5 .00  -4 .73 -4 .48  -4 .18  -5 .34  -5 .02  -4 .75  -4 .46  

25 -6 .47  -5 .95 -5 .53 -5 .08  -7 .19  -6 .63 -6 .08  -5 .89  
50 -5 .89  -5 .43 -5 .13 -4 .76  -6 .23 -5.81 -5 .48  -5 .12  

100 -5 .52  -5 .18  -4.91 -4 .59  -5 .97  -5 .58  -5 .25  -4 .92  
250 -5 .38  -5 .05  -4 .78  -4 .74  -5 .69  -5 .37  -5 .07  -4 .80  
500 -5 .34  -5 .04  -4 .78  -4 .50  -5 .67  -5 .33  -5 .06  -4 .76  

25 -6 .95  -6 .37  -5 .90  -5 .44  -7.61 -6 .93  -6 .43 -5.91 
50 -6 .35 -5 .85 -5 .47  -5 .10  -6 .64  -6 .18  -5 .82  -5.41 

100 -5 .86  -5 .49  -5 .20  -4 .89  -6 .09  -5 .76  -5 .50  -5 .16  
250 -5 .66  -5 .35  -5 .08  -4 .77  -5 .95  -5.61 -5 .34  -5 .04  
500 -5 .63 -5.31 -5 .06  -4 .76  -5 .92  -5 .56  -5 .29  -5 .02  

Critical values for the cointegration ADF- t e s t  allowing for I(2) variables. An intercept plus a trend have been included in 
the cointegration regression. The indices mt and m 2 indicate the number of I(1) and I(2) variables, respectively, on the right 
hand side of the cointegration regression. The left hand side variable is an I(2) variable. T indicates the sample size. 
Note: It is assumed a priori that all the I(2) variables of the model cointegrate into an I(1) relation, so under the null 
hypothesis residuals are I(1) and under the alternative these are I(0) indicating multicointegration. 
The standard errors of the fractiles vary, but generally they lie in the interval {0.01-0.03}. The simulations were based upon 

50 000 replications. 
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Table 2 
Quadratic trend case 
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m~ T Probability of a smaller value 

m2=l  m2=2 

0.01 0.025 0.05 0.10 0.01 0.025 0.05 0.10 

25 - 5.77 - 5.28 - 4.86 - 4.43 - 6.44 - 5.85 - 5.42 - 4.96 
50 -5.20 -4.81 -4.47 -4.12 -5.61 -5.21 -4.88 -4 .52 

100 -4.94 -4 .60 -4.32 -4 .00 -5.33 -4.97 -4.67 -4 .34 
250 -4.77 -4.47 -4.21 -3.92 -5.13 -4 .79 -4.52 -4.23 
500 -4.73 -4.43 -4.17 -3.88 -5.07 -4 .76 -4 .50 -4.21 

25 -6.21 -5 .69 -5.27 -4.83 -6.85 -6 .30 -5 .82 -5.33 
50 -5 .56 -5 .16 -4.83 -4.47 -5 .99 -5 .58 -5 .22 -4 .86 

100 -5 .29 -4.93 -4 .64 -4.32 -5.63 -5.27 -4.98 -4.65 
250 -5.11 -4 .79 -4.52 -4.23 -5.43 -5 .09 -4 .84 -4 .54 
500 -5.05 -4.75 -4.49 -4 .20 -5.35 -5.05 -4.78 -4 .49 

25 -6.66 -6 .10  -5.65 -5 .20 -7 .32 -6.68 -6.21 -5 .69 
50 -5.92 -5 .50 -5.17 -4 .82 -6.35 -5.90 -5 .54  -5 .16 

100 -5.57 -5.23 -4.95 -4.63 -5 .90  -5.54 -5.25 -4 .92 
250 -5.42 -5.08 -4.82 -4.52 -5 .69 -5.37 -5 .10  -4.80 
500 -5.36 -5 .04 -4.77 -4.48 -5.61 -5.29 -5 .04 -4.76 

25 -7.12 -6.51 -6.05 -5.55 -7 .68 -7 .06 -6.55 -6.03 
50 -6.27 -5.85 -5 .50 -5 .12 -6.63 -6.23 -5 .86 -5 .46 

100 -5 .90  -5 .54  -5.25 -4.91 -6.19 -5.85 -5.55 -5 .22 
250 -5.71 -5.38 -5.11 -4.81 -5.96 -5 .64  -5.37 -5.07 
500 -5 .60 -5 .30 -5 .04 -4 .76 -5.85 -5.55 -5 .30 -5 .02 

25 -7.61 -6.93 -6.43 -5.91 -8.18 -7.47 -6.93 -6.38 
50 -6 .56  -6.15 -5 .79 -5.41 -7 .00  -6.55 -6 .16 -5 .76 

100 -6.18 -5.81 -5 .52 -5.19 -6.47 -6 .10  -5 .80 -5.47 
250 -5 .96 -5 .64 -5 .36 -5.05 -6.21 -5.87 -5 .60  -5.31 
500 -5.87 -5.57 -5 .30 -5.01 -6 .12 -5 .80 -5 .54  -5 .26  

Critical values for the cointegration ADF-test allowing for I(2) variables. An intercept, a time trend and a quadratic time 
trend have been included in the cointegration regression. The indices rn~ and m 2 indicate the number of I(1) and I(2) 
variables, respectively, on the right hand side of the cointegration regression. The left hand side variable is an I(2) variable. 
T indicates the sample size. 
Note: It is assumed a priori that all the I(2) variables of the model cointegrate into an I(1) relation, so under the null 
hypothesis residuals are I(1) and under the alternative these are I(0) indicating multicointegration. 
The standard errors of the fractiles vary, but generally they lie in the interval {0.01-0.03}. The simulations were based upon 
50 000 replications. 

cr i t ical  va lues  are ex tended  to the case where,  respec t ive ly  a t rend and  a t rend plus  a quadra t ic  t rend 

have  b e e n  inc luded  in  the regress ion  as well ,  i.e. var ious  vers ions  of  (2). 

A n o t h e r  procedure  to adopt  is to cons ide r  the 1(2) p rocedure  for gauss ian  VAR mode l s  advoca ted  by  
t t 

Johansen  (1995) ,  where  ~ j = l  Xj and  Y~=I Yj are i nc luded  a m o n g s t  the var iab les  of  the VAR model .  

The  procedure  is s t ra ight forward  and  na tura l ly  is more  genera l  than  the s ingle  equa t ion  procedure  
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described above since several multicointegrating relations may be tested for, at least in principle. See 
also Engsted and Johansen (1997) where a discussion of gaussian VAR models for 1(2) variables and 
the relation to multicointegration is given. 

3. Conclusion 

Granger and Lee (1990) have suggested how a deeper form of cointegration, multicointegration, 
may potentially occur for time series integrated of order one when the cumulated errors at one level of 
cointegration cointegrate with the original variables. Testing for multicointegration is important since 
the standard error correction model will be misspecified if multicointegration is present and hence will 
have serious implications for e.g. estimation, inference, and forecasting. Granger and Lee propose a 
two-stage procedure to test for multicointegration. In this note we suggest how to redefine the 
multicointegration model of Granger and Lee (1990) in terms of an I(2) system and subsequently 
propose a one-step procedure for estimation and inference which will have favourable statistical 
properties compared to the two-step procedure. The problem with the Granger and Lee two step 
procedure, when the cointegration vector is unknown, is that in their second stage they suggest using 
cumulated regression errors in a cointegration regression. As we have shown this will invalidate the 
use of standard tables for cointegration inference since the limiting behaviour of the cumulated series 
will be a Brownian bridge, rather than a Brownian motion process. The advantage of the one stage 
procedure that we opt for is that some of the cointegrating parameters, i.e. those associated with 
generated 1(2) variables, can be estimated at the Op(T 2) consistent rate, - a property that should 
naturally be exploited in estimation. Both the Johansen multivariate 1(2) procedure and a single 
equation procedure may be adopted (given there is only a single multicointegrating relation). With 
respect to the single equation residual based cointegration procedure for 1(2) systems we tabulate new 
critical values that are necessary in order to accommodate the presence of deterministic components. 
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